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Abstract 

The United States Department of Agriculture's (USDA's) National Agricultural Statistics 

Service (NASS) provides timely and accurate statistics in service to United States (U.S.) 

agriculture. The June Area Survey (JAS), whose sample is drawn from the NASS area 

frame, provides an early season estimate of crop-specific planted acreage for a variety of 

crops. These estimates, with the June Crops Acreage, Production, and Stocks Survey, 

informs the official June acreage estimate. For the JAS, tracts of land are drawn, and 

surveyed farmers report the crop types planted in each tract. As in any survey, tract-level 

nonresponse is possible. Currently, NASS uses manual imputation to mitigate tract-level 

nonresponse, where staff use historical data to fill in missing crop types. An alternative, 

automated approach is proposed that does not require human intervention. The approach 

uses machine learning models to predict the new crop type using historical crop rotations 

on parcels of land called crop sequence boundaries (CSBs). The CSB-level predictions 

are aggregated to the tract level to provide the imputation. The model-based approach is 

shown to outperform the manual one for a variety of crop types. 
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Survey 

 

 

1. Introduction 

 

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics 

Service (NASS) conducts hundreds of surveys and publishes reports on a wide variety of 

topics relating to agriculture in the United States (U.S.). These reports are available to the 

public and are used by farmers and ranchers, universities, federal and state agencies, and 

internal USDA stakeholders. One such report is the June Acreage report, which as its 

name implies, is published at the end of June. This annual report provides acreage, 

harvesting, yield, and weather information for the planting season leading up to the 

publication date.  

 

Statistics provided in the June Acreage report are the result of an expert review process 

that is conducted under the direction of the NASS Agricultural Statistics Board (ASB). 

The process includes two surveys, the June Crops Acreage, Production, and Stocks 

Survey and the June Area Survey (JAS). The JAS is an area-based survey, where plots of 

land called tracts are sampled according to a survey design. Once selected, data on 

agricultural activity within the tract is collected from the farmer by trained interviewers. 

These data, along with weights from the survey design, are used to provide state-level 

estimates for the agricultural quantities of interest. Part of the tract level data collected 



 

are acreages planted to various crops. These acreages are part of the data series that 

inform the published planted acreages in the June Acreage report.  

 

Nonresponse is a fact of life in many surveys and the JAS is no exception. Currently, 

NASS field office statisticians manually impute the tract-level data for non-responding 

farmers. This manual imputation process is time consuming and expensive, so an 

alternative, automated approach is desirable. Since the JAS is an area survey, the 

digitized tracts can be overlayed with geospatial data useful for imputation.  

In this paper, the focus is on reliably imputing missing crop-acreage data in selected 

tracts using field level predicted crop acreages. Many models for field level crop type 

prediction exist. A recent approach uses machine learning to predict crop types planted in 

fields called crop sequence boundaries (Abernethy et al., 2023). Crop sequence 

boundaries (CSBs) are areas of land selected to contain homogenous crop rotation 

patterns (Hunt et al., 2024). The historical crop rotation in the boundary can be combined 

with a LightGBM (Ke et al., 2017) model to predict the crop planted within the boundary 

during the current planting season.  

 

The proposed imputation process is described as follows. First, the LightGBM model 

using historical crop rotations is used to predict the current crop type that will be planted 

within the CSB. Next, the JAS tracts and CSBs can be overlayed. After this, the imputed 

acreage value for a given crop is the sum of the areas of CSBs within the tract predicted 

to be planted to the crop. Finally, tracts are selected for imputation based on reliability of 

the model forecasts using the average entropy of the model predictions within the tract.  

 

1.1 Objective and Outline 

 

The objective of this paper is to combine a modern machine learning approach with 

geospatially referenced field boundaries to forecast crop planted areas that can be used to 

impute missing information caused by nonresponse within the JAS tracts. This automatic 

approach can then be compared with the traditional manual approach using 

administrative ground truth data augmented with end-of-season gridded landcover-type 

data.   

 

In Section 2, the JAS is described, with a focus on the tracts, crop acreage data collected, 

and current imputation processes. In Section 3, a machine learning based approach using 

field analogues called CSBs is proposed for automatic imputation of tracts with missing 

data. The experimental setup is described and the automatic imputations are compared to 

the manual ones with respect to the ground truth in Section 4. Finally, Section 5 

concludes.  

 

2. June Area Survey 

 

2.1 Design 

 

The JAS is conducted annually during the month of June. Since it is an area survey, the 

units sampled are parcels of land. To collect the sample, the continental U.S. is divided 

into strata based on the level of agricultural activity. Within each stratum, the land is 

again divided into substrata, based on similar types of agricultural activity. Within each 

substratum, the land is divided into primary sampling units. Stratified random sampling is 

used to select a set of primary sampling units. 

 



 

Once a primary sampling unit is selected, it is divided into parcels of land called 

segments. Each segment is typically (but not always) a one square mile plot of land. 

Next, one segment is randomly sampled from each of the previously selected primary 

sampling units. The sampled segments are divided into tracts which represent unique land 

operating arrangements. The survey data are collected from all farmers who own or 

operate a tract within a selected segment. Note that it is possible for segments and tracts 

to not be on agricultural land, in which case no data is collected. 

 

A JAS segment with tracts representing unique land operating arrangements is provided 

in Figure 1 below. The segment boundary is show in red, while the tract boundaries are 

shown in blue. The unique land operating arrangements are labeled A-H. Note that tracts 

can contain agricultural and non-agricultural land (in this case trees). This segment was 

randomly sampled according to the survey design and is located in Lancaster County, 

Pennsylvania.  

 

 
Figure 1: A JAS segment in Lancaster County, PA with boundaries in red. The segment is divided 

into tracts (boundaries in blue) that represent unique land operating arrangements (A-H).  

 

 

 

 



 

2.2 Data Collected 

 

Once an agricultural JAS tract is selected, the owner is interviewed about the agricultural 

activity conducted within the tract. Apart from contact information, data collected include 

ownership and operating structure, information on workers, acreage of crops planted (or 

to be planted), acreage of crops harvested (or to be harvested), livestock information, 

crop storage, government program participation, economic data such as sales and land 

value, technology use (e.g. internet use, tablet use, etc.), and demographic information. 

The focus of this paper is acreage of crops planted (or to be planted), where the goal is to 

impute missing planted acreage values when a farmer non-response occurs.  

 

The JAS collects acreage for a variety of crops, including corn, sorghum, barley, winter 

wheat, spring wheat, durum wheat, rye, rice, millet, hay, soybeans, peanuts, sunflowers, 

canola, flaxseed, safflower, cotton, sugar beets, sugarcane, tobacco, dry beans, chickpeas, 

lentils, peas, and potatoes. Along with the survey weights, this crop acreage data is used 

to provide planted acreage at the state and national level. Note that every crop does not 

appear in every state (for example Louisiana has a published value for rice acreage while 

Illinois does not). 

 

2.3 Manual Imputation 

 

Like many surveys, the JAS is subject to non-response. This can occur when the farmer 

refuses to participate in the survey or is otherwise inaccessible. Partial response is also 

possible. For example, a farmer completing an online survey may report corn but fail to 

report presence or absence of other crops. Regardless, when farmers do not respond to a 

survey item, the item must be imputed.  

 

Currently, missing items are imputed manually by NASS staff. Interviews with 

respondents can occur either in person or remotely (by telephone or online). The method 

of interviewing determines the method of manual imputation. If the missed interview is in 

person, the interviewer will attempt to fill out the survey form based on visual 

assessment. For example, if the interviewer sees corn growing in a ten-acre field within 

the tract then ten acres of corn can be added to the imputation. If the missed response 

does not involve an in-person interview, then imputation is performed by office staff 

using historical data, administrative data, or conventional imputation techniques using 

survey respondent data.  

 

3. Automatic Imputation Approach 

 

3.1 Crop Sequence Boundaries 

 

The input data for the proposed automatic imputation approach are the NASS Crop 

Sequence Boundaries (CSBs) (Abernethy et al., 2023; K. Hunt, 2024; K. A. Hunt et al., 

2024). These algorithmically delineated field polygons represent fields with consistent 

cropping history over a fixed period of time (Abernethy et al., 2023; K. A. Hunt et al., 

2024). Coverage of the CSBs includes the entire continental U.S. where crop land is 

present. They are available to the public in eight-year windows, with the oldest being 

2008-2015 and the newest as of this writing being 2016-2023. More information on how 

the CSBs are created can be found in Abernethy et al., 2023; K. A. Hunt et al., 2024. 

 



 

Figure 2 shows a one-year snapshot of a set of eight-year CSB polygons in Bond County, 

Illinois. Note the field boundaries (black) which in this case contain corn (yellow), 

soybeans (green), winter wheat (brown), and alfalfa (pink). Also note how the non-

agricultural land (mostly roads and trees) does not have CSBs. Finally, notice how some 

homogenous cropping areas contain more than one CSB. This is a result of looking at a 

one-year snapshot of eight-year homogenous crop type fields. Multiple CSBs in these 

areas indicate that the crop type in the area was not homogenous in at least one year of 

the eight-year time series of cropping history. 

 

 
Figure 2: Corn (yellow), soybean (green), wheat (brown), and alfalfa (pink) CSBs in Bond 

County, Illinois. 

 

A three-year snapshot of a hypothetical set of CSB polygons is provided in Figure 3 

below. The crop types in this simple example are corn (yellow) and soybeans (green). 

One can see that in the current year (year three), the L-shaped region has one common 

crop type but is composed of four CSBs. This is because the rotation history over years 

one, two, and three is only homogenous within the red boundaries that define the CSB 

polygons. CSBs are designed not to have multiple crop types planted within them during 

any given year. This one crop per year rule makes the CSBs useful for crop type 

forecasting applications as demonstrated in Section 3.2. 



 

 
Figure 3: Hypothetical three-year CSBs (red) defined by areas with homogenous corn (yellow) 

and soybean (green) crop rotation history. 

 

3.2 CSB Crop Type Forecasting Using Machine Learning 

 

Given a set of CSBs with a fixed timespan window 𝒘, the goal is to use the historical 

crop rotation to predict the crop type inside each CSB during the current year, 𝒘+ 𝟏.  

First assume a set of CSB polygons, enumerated 𝒊 = 𝟏, 𝟐,… , 𝒏, a set of crop types to 

predict, enumerated 𝒋 = 𝟏, 𝟐,…𝒎, and a year within the crop rotation history 𝒕 =
𝟏, 𝟐,… ,𝒘. Historical crop rotation data 𝑿𝒊𝒕 is available, where 𝑿𝒊𝒕 is an indicator vector 

of length 𝒎, with entries 𝒙𝒊𝒋𝒕 = 𝟏 indicating the presence of crop 𝒋 in CSB 𝒊 at time 𝒕. 

The vector 𝑿𝒊𝒕 can only have one non-zero entry. The indicator structure of 𝑿𝒊𝒕 is 

possible because the CSBs are designed to contain only one crop type each year (see 

Section 3.1). For any alternative polygon, the crop types inside would have to be treated 

as an 𝒎 vector of proportions of each crop type within the field.  

 

Using the historical data above, the goal is to predict the crop types in each CSB during 

the current year, 𝑿𝒊(𝒘+𝟏). To do this in a simple way, an added assumption is needed that 

the CSB contains only one crop during the current year. While historical homogeneity 

over the window 𝒘 does not guarantee a one crop CSB during the current year, it can be 



 

encouraged by choosing a large enough 𝒘. A large 𝒘 suggests stability, as a farmer 

planting only one crop type in a CSB each year over a long history suggests this behavior 

is likely to continue. Furthermore, the competitive performance of CSB-based models 

with an eight-year window (𝒘 = 𝟖) in relation to pixel-based alternatives that are less 

sensitive to this assumption in Abernethy et al., 2023 suggests that CSBs suddenly 

becoming multi-crop are rare and have minimal impact on predictive accuracy. Under 

this assumption the response variable follows a multinomial distribution given the 

rotation history, which allows the use of a variety of off-the-shelf statistical or machine 

learning models.  

 

The supervised machine learning setup for this application is nearly identical to that used 

in Abernethy et al., 2023. The only difference is that different crop types are predicted to 

accommodate imputing crop types important to the JAS (see Section 4.2 for the crop 

types examined). To review the setup, the input data are eight-year window CSBs. The 

predictor variables use six years of rotation history, the area of the CSB in acres, and the 

NASS agricultural statistics district in which the CSB is located. Note that an agricultural 

statistics district is a NASS-defined set of counties within a state with similar agricultural 

practices. For the machine learning algorithm, a gradient boosting approach called 

LightGBM (Ke et al., 2017) via the lightgbm R package is used to train multiclass 

models to predict the crop types. Tuning parameters for LightGBM are validated using 

time series cross validation over a moving window. In particular, candidate models are 

trained using years one through seven. The best model is selected using years two 

through eight. The final model with best tuning parameters is trained using years two 

through eight. Finally, years three through eight are fed into the model to predict the crop 

type in the unknown year nine.  

 

3.3 Imputation 

 

Given the predictions described in Section 3.2, imputation can be achieved by a simple 

overlaying process. Since the JAS is area-based, it is possible to geo-reference the tracts. 

Geo-referenced tracts have been available internally to NASS since 2021. These tracts 

can be rasterized to a given extent (e.g. state) for comparison with other geospatial data 

products. The rasterized dataset is a grid of pixels within the state where each pixel is 

either labeled with a tract id or a value indicating that no tract is present.  

 

To complete the imputation, the CSBs were rasterized in a similar manner. The predicted 

crop type can be joined to the rasterized CSB by id resulting in a grid of rasterized crop 

type predictions. These predictions are overlayed with the rasterized tracts. The imputed 

values are the sum of the crop probabilities within the tract. All datasets were rasterized 

using 900 square meter pixels, as this presented the best compromise between accurately 

representing the JAS tracts and CSB polygons while also being computationally tractable.  

 

The modeled crop type probabilities can also be used to provide a measure of uncertainty 

for the imputation of each tract. In particular, the average entropy 𝑯 in the tract is used 

here and defined below.  
 

𝑯 = −
∑ ∑ 𝑨𝒓𝒆𝒂𝑪𝑺𝑩 ∗ 𝒑𝑪𝑺𝑩(𝒕𝒚𝒑𝒆 = 𝒊) 𝐥𝐧(𝒑𝑪𝑺𝑩(𝒕𝒚𝒑𝒆 = 𝒊))𝒊∈𝒄𝒓𝒐𝒑 𝒕𝒚𝒑𝒆𝒔𝑪𝑺𝑩∈𝑻𝒓𝒂𝒄𝒕

∑ 𝑨𝒓𝒆𝒂𝑪𝑺𝑩𝑪𝑺𝑩∈𝑻𝒓𝒂𝒄𝒕
 

 



 

In this case the sums run over all CSBs in the tract and all crop types that could be 

planted within the CSB. The CSB area, 𝐴𝑟𝑒𝑎𝐶𝑆𝐵, is measured in acres. The crop type 

probabilities 𝑝𝐶𝑆𝐵(𝑡𝑦𝑝𝑒 = 𝑖) are derived from the LightGBM model described in Section 

3.2. These entropies can be used to only impute tracts where model certainty is high 

(entropy close to zero up to some practical threshold, see Section 4.4). Areas where the 

model is uncertain (entropy is large) can be passed to the manual imputation process. 

This can assure quality automatic imputations while still reducing staff workload.  

 

Entropies in areas where CSBs are not present are assumed to be zero. The CSBs are 

designed to cover all cropland, so a lack of a CSB means the area likely has no crops, 

which would suggest the zero-entropy assumption is reasonable. However, the CSBs are 

not perfectly accurate, so there will be some error in this assumption. Obtaining more 

accurate entropies for areas with no CSB is a subject of future work.  

 

An example summary of the imputation process is illustrated in Figure 4, which shows a 

hypothetical tract with four CSBs. Six years of history are provided for each CSB, each 

following a corn-soybean cropping pattern. The goal is to use this history to predict the 

crops planted in the tract during year seven. In this case, the history is used to train a 

machine learning model that predicts the corn probability (and by extension the soybean 

probability) for each CSB for year seven. These probabilities can be used for tract level 

imputations and uncertainties (see Figure 4). 

 

 
Figure 4: Six-year crop rotation history for a hypothetical tract (outer red boundary) with four 

CSBs (inner red boundary) each following a corn (yellow) soybean (green) system. Prediction of 

year seven is accomplished with LightGBM model. Modeled corn probabilities are multiplied by 

CSB areas and summed to get imputed tract corn area. Entropy H is also calculated to get tract 

level uncertainty.  

 

4. Experiment Set Up and Results 

 

4.1 Ground Truthing 
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Ground truthing is used to compare the accuracy of the automatic model-based crop type 

predictions with historical manual imputations. The ground truth used is USDA’s Farm 

Service Agency (FSA) Form 578 administrative data. FSA data are a georeferenced set of 

U.S. crop fields supporting commodity and conservation programs. These data are 

obtained from farmers who participate in FSA’s crop insurance program. The FSA 578 

data are updated every growing season and historical data are available as far back as 

2008. Data for each farmer who participates in the program is usually available later in 

the season (July and August). The FSA 578 data are administratively confidential and not 

available for public dissemination (Heald, 2002; USDA-FSA, 2017).  

 

The subset of FSA data used in Boryan et al., 2011 to train and validate the NASS 

Cropland Data Layer is used in this study. This subset contains all FSA fields with only 

one crop within the field. The FSA acres within a tract for each crop type can be obtained 

by rasterizing the FSA ground truth and adding the pixel acreage of each crop type within 

the tract. Since these data only include USDA program participants and exclude multi-

crop fields, the FSA coverage of all crop acres is not complete. This means that June 

tracts will typically not have full ground truth coverage. The incompleteness requires a 

modified error function as described in Section 4.3.  

 

In addition to the FSA data, the National Land Cover Dataset (NLCD) is also used to 

represent non-agricultural data (Homer et al., 2012). In particular, areas with no FSA 

coverage that contain NLCD nonagricultural land are included in the ground truthing as 

such. The 2019 NLCD raster is used for this study.  

 

4.2 Study Area and Crop Types 

 

The model predictions and manual imputations are compared using all high ground truth 

coverage agricultural tracts in the continental U.S., with the exception of North Dakota, 

which was excluded due to clerical issues. High ground truth coverage means that the 

tract has at least 90% ground truth coverage. The years for which comparisons are made 

are 2021, 2022, and 2023. 

 

The CSBs, JAS tracts, and FSA ground truth data all provide slightly different crop-type 

information. Many, but not all, of the crop types overlap between the three sources. 

Furthermore, many crop types are rare at the tract level, so sample sizes are not large 

enough for meaningful comparison. For these reasons, crop types that appear on all three 

sources and appeared in at least 50 tracts on average over the three-year period were 

chosen for this study. The selected crop types were corn, cotton, peanuts, rice, sorghum, 

soybeans, spring wheat, and winter wheat.  

 

4.3 Error Function 

 

Ideally, error between each approximation (predictive model and manual imputation) 

could be described using the absolute difference, shown below. 

 

𝐸𝑗𝑘
∗ = |𝐴𝑠𝑗𝑘 − 𝐴𝐹𝑗𝑘| 

 

In this case the error 𝐸𝑗𝑘
∗  for crop 𝑗 in tract 𝑘 is the absolute difference between the 

acreage 𝐴𝑠𝑗𝑘 predicted by approximation 𝑠 for crop 𝑗 in tract 𝑘 and the ground truth FSA 



 

acreage 𝐴𝐹𝑗𝑘. This error function assumes complete coverage of the FSA ground truth 

within a tract. 

 

As mentioned in Section 4.1, the FSA ground truth data do not have complete coverage 

in general. This means that the ground truth can only provide lower and upper bounds. 

For each crop, the lower bound is the FSA ground truth acreage of the crop and the upper 

bound is the FSA ground truth acreage of the crop plus any additional acreage in the tract 

containing no FSA data. This suggests the use of the threshold error function below. 

 

𝐸𝑗𝑘 =   x( , 𝐴𝐹𝑗𝑘 − 𝐴𝑠𝑗𝑘 , 𝐴𝑠𝑗𝑘 − 𝐴𝐹𝑗𝑘 −𝑀𝑘) 

 

The extra term 𝑀𝑘 is the acreage of the tract where there is no ground truth. The function 

𝐸𝑗𝑘 will produce a non-zero error whenever an approximation produces a crop acreage 

less than the ground truth lower bound or greater than the ground truth lower bound plus 

the no data acreage. There is a region of uncertainty when an approximated crop acreage 

is between the lower bound and the sum of the lower bound and acreage with no ground 

truth. In this region of uncertainty, the error is set to zero. The reason for only selecting 

tracts with 90% or more ground truth coverage in Section 4.2 is to minimize the effect of 

the ground truth under coverage and resulting zero inflation in the errors. 

 

Once the errors 𝐸𝑗𝑘 are obtained for crop 𝑗 and tract 𝑘, the ratio of average errors 𝑅𝑗
𝜏 is 

reported for each crop. The error ratio 𝑅𝑗
𝜏 is defined below: 

 

𝑅𝑗
𝜏 =

∑ 𝐸𝑗𝑘
𝑚𝑜𝑑𝑒𝑙

𝑘∈𝑡𝑟𝑎𝑐𝑡𝑠(𝜏)

∑ 𝐸𝑗𝑘
𝑠𝑢𝑟𝑣𝑒𝑦

𝑘∈𝑡𝑟𝑎𝑐𝑡𝑠(𝜏)

 

 

In this case 𝑡𝑟𝑎𝑐𝑡𝑠(𝜏) refers to the set of all tracts with at least 90% ground truth 

coverage and entropy less than or equal to 𝜏. The quantity 𝐸𝑗𝑘
𝑚𝑜𝑑𝑒𝑙 is the model error for 

crop 𝑗 in tract 𝑘, and 𝐸𝑗𝑘
𝑠𝑢𝑟𝑣𝑒𝑦

 is the survey error for crop 𝑗 in tract 𝑘. It is desirable to 

choose an entropy threshold 𝜏 to keep the error ratio less than or equal to one, as this 

means that the average error of the automatic imputation is no worse than that of the 

manual one for tracts with entropy below 𝜏.  

 

4.4 Results 

 

Counts for each crop type by year are provided in Table 1 below. The count refers to the 

number of tracts that contain nonzero FSA ground truth for each crop type. Note that all 

crop types in Table 1 have at least 40 instances each year, averaging at least 50 instances 

over three years. The most common crops, corn and soybeans, are planted in over a 

thousand tracts each, while the least common, peanuts, are only planted in slightly more 

than 50 tracts on average.  

 

 

 

 

 

 



 

Table 1: Count of Tracts Containing Specified Crop 

Crop Count 2021 Count 2022 Count 2023 

Corn 1824 1629 1478 

Cotton 256 266 258 

Peanuts 45 53 57 

Rice  100 49 122 

Sorghum 130 124 124 

Soybeans 1804 1687 1433 

Spring Wheat 87 92 96 

Winter Wheat 349 376 336 

Total Tracts 4155 4076 3866 

 

 

The results of the comparison for all three years combined are provided in Figure 5 

below. The x axis in Figure 5 is a threshold on the entropy, as described in Section 4.3. In 

particular, all tracts with entropy less than or equal to the threshold are retained for 

imputation by the model. The model-based entropies range from roughly zero to two. The 

y-axis is the ratio of average errors described in Section 4.3. It ranges from about zero to 

about 1.3. Each colored dot represents the ratio of average errors between the model and 

manual imputations for each crop at the specified entropy threshold. The vertical black 

line specifies an entropy cutoff of about 0.6. The horizontal black line represents an error 

ratio of one.  

 

 
Figure 5: Ratio of average errors by entropy threshold using combined data from all years. Using 

an entropy threshold of about 0.6 keeps the average errors below one for all crop types.  

 

Figure 5 demonstrates that for most crops it is not possible to guarantee an error ratio 

below one while retaining all tracts for imputation. However, it is possible to achieve an 

error ratio below one by selecting tracts with a model-provided entropy below about 0.6. 

Most crops follow the expected pattern where the error ratio increases as the entropy 

increases. Deviations from this pattern near zero occur for some crops with smaller tract 

count in Table 1. This may be because occurrence in fewer tracts would also suggest 



 

fewer CSBs in the model to train for these rare classes. Thus, the errors on these crops 

even when the model is confident may result from class imbalance during model training.  

 

Figure 6 depicts the same information as Figure 5 but broken down by year. The results 

are similar to the pooled data for all years, although there are a few cases where the 

threshold method is not as effective. These cases are cotton and sorghum in 2022 and 

peanuts in 2023. The average error ratio for rice is also slightly above (but very close to) 

one in 2021 and 2023. Regardless, using the 0.6 entropy threshold keeps the average 

error below one every year for the three most prevalent crop types (corn, soybeans, and 

winter wheat) and nearly so for the fourth most prevalent, cotton. 

 

Temporal variability between years does exist in Figure 6 and may result from a variety 

of factors. One likely factor is the prevalence of in-person imputations versus office 

imputations each year. Furthermore, year-to-year variability on the model side may also 

exist. In particular, economic or weather incentives can cause farmers to alter their 

planting decision from what their past cropping history may suggest. These in-season 

factors will likely affect the quality of model predictions trained only on historical 

cropping patterns.  

 

 

While thresholding can improve the average model imputation error with respect to the 

manual imputation, it does require that tracts with high entropy be skipped over. This 

leads to the question of how many tracts are lost for potential imputation. If only a small 

percentage of available tracts can be automatically imputed, then the procedure may not 

be very useful in practice. Table 2 lists the percentage of tracts that meet the maximal 

entropy criteria of 0.6 by year.  

 

 
 

Figure 6: Ratio of average errors by entropy threshold broken out by year. Using an entropy 

threshold of about 0.6 keeps the average errors below or very close to one for most crop types. 



 

Table 2: Percent of Tracts Containing Specified Crop Retained After Thresholding 

Crop Percent 2021 Percent 2022 Percent 2023 

Corn 55 58 56 

Cotton 43 32 47 

Peanuts 38 19 39 

Rice  28 20 25 

Sorghum 19 23 27 

Soybeans 53 60 59 

Spring Wheat 17 17 10 

Winter Wheat 35 36 38 

Total Tracts 56 58 58 

 

From Table 2 it can be seen that over half of the total tracts are kept, even when 

thresholding. This could suggest a substantial reduction in manual work overall. As for 

crop type, the more common crop types benefit most. Corn and soybeans consistently see 

over 50% of tracts containing these crops acceptable for automatic imputation. Winter 

wheat and cotton also see substantial potential for automatic imputation, with at least 

30% in-scope tracts each year. The worst results occur with the rarest crops, which is also 

indicative of class imbalance, as the model may be more accurate for the majority classes 

and therefore low entropy tracts may occur most often in tracts with minority class counts 

of zero.  

 

5. Conclusion and Future Work 

 

A machine learning model using fields with homogeneous cropping patterns called crop 

sequence boundaries was proposed to assist in imputation of the NASS JAS. This 

automatic approach could potentially help relieve the staff time and cost related to the 

current use of manual imputation. While the model-based imputation error is not lower 

than the manual error when using all tracts, it can be reduced by only imputing tracts with 

sufficiently low model-based entropy. Choosing tracts to impute based on an entropy 

threshold keeps the average model errors lower or near equal to the manual ones for most 

crops and years. This automatic approach could potentially lead to an over fifty percent 

reduction in tracts that need to be manually imputed.  

 

Several avenues of future work exist. The first is incorporating available ground truth 

information into the automatic imputation process. FSA-based crop-type information is 

typically not complete until August; however, some data are available by June, 

particularly winter wheat data. Other near ground truth data may exist as well. For 

example, historical JAS data suggesting non-crop land in a tract is unlikely to change 

year over year. For example, farmsteads, barns, silos, equipment storage areas, etc. are 

unlikely to be converted into cropland. These ground truth sources can be combined with 

the model predictions to potentially yield more accurate imputations. 

 

The second is to break out model performance by manual imputation type and item-level 

response. For example, failed in-person interviews where the interviewer records 

observed crops may be more accurate than office-based manual imputation. Furthermore, 

partially imputed data that contain some true farmer provided responses will likely be 

more accurate than data for which all crop data were imputed. Currently it is not possible 

to separate these cases using available data. The model may perform better when used 

only in cases that would have been completed by remote office-based imputations, should 

it become possible to identify these cases.  



 

 

Another potential for future work is the addition of more useful variables to the predictive 

model. Most relevant would include economic data like crop prices and futures, nearby 

ethanol production, changes in government programs, etc. Weather data, such as 

precipitation, soil moisture levels, and temperature, also impact planting decisions. The 

current challenge in including these data is that historical, field-level crop-type data are 

typically only available starting in 2008 for the continental U.S. Using six-year crop 

rotations means the first year available for training a model is 2014. This means that there 

is not a large enough temporal sample size to adequately capture the influence of these 

variables, which vary greatly in time. One solution option would be research in producing 

CSBs prior to 2008. 
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