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Abstract. Gridded landcover datasets like the NASS Cropland Data Layer (CDL) provide a useful resource for analyses of
cropland management. However, many farm operation decisions are made at the field level, not the pixel level. To capture
relationships between land cover and field characteristics – size, contiguity, etc. – some method is needed to aggregate gridded
data into crop fields. To provide a uniform and consistent approach for aggregation of gridded data at the field level over a series
of years, this research project developed a set of Crop Sequence Boundaries (CSBs), which are polygons that delineate areas
of homogeneous cropping sequences for the contiguous US. The CSBs are open-sourced algorithm-based, geospatial polygons
derived using historic CDLs together with road and rail networks to capture areas with common cropping sequences. The CSB
approach used geospatial functions in Google Earth Engine (GEE) and in the ArcGIS Pro application. These geospatial functions
are run in parallel by sub-dividing the contiguous US into smaller regions based on road and rail boundaries to prevent overlaps or
gaps in the data. As a new set of algorithmically delineated field polygons, the CSBs enhance applications requiring large-scale
crop mapping with vector-based data.
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1. Introduction

The United States Department of Agriculture
(USDA) has two of the thirteen federal principle statisti-
cal agencies: the Economic Research Service (ERS) and
the National Agricultural Statistics Service (NASS).
These two agencies continuously collaborate and coor-
dinate on the compilation and analysis of data and the
dissemination of information for statistical purposes [1].

One example is the NASS Cropland Data Layer
(CDL). The CDL provides operational in-season crop
type estimates at 30-meter resolution by utilizing mul-
tispectral imagery from Earth observational satellites
and a classification algorithm trained on crop acreage
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reporting data maintained by USDA’s Farm Service
Agency (FSA). This gridded dataset is produced for
the contiguous US and is disseminated annually to the
public following the completion of the growing season.
The CDL for the contiguous US has been available each
year since 2008 [2].

The new, algorithmically delineated field polygons,
called Crop Sequence Boundaries (CSBs), presented
in this paper were developed in a collaborative effort
between ERS and NASS by leveraging a time series
of historical CDLs. The CSBs are vector-based bound-
aries for areas with homogenous crop rotation histories
also derived from the CDL. Some derivative products
of the CDL include the National Frequency Layer [3]
and the National Cultivated Layer [4]. The CBSs are
automatically and algorithmically, rather than manually,
delineated. Other field-level polygon datasets are often
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manually delineated, represent legal or administrative
boundaries, and, most importantly for analysis of grid-
ded datasets, frequently do not necessarily correspond
to the idea of a field as an area with a uniform crop rota-
tion because legal land units are often split or combined
into effective management areas.

Geospatial research has been developing automated
crop-field delineations methodologies for over 30 years.
Most studies have been published in the last three to
five years, a reflection of recent improvements in data,
computing power, and methods. Geographically, most
studies focus on relatively small regions to demonstrate
and test methodological advances. Within the United
States, these studies have focused on multiple states [5,
6], Iowa [7], and Illinois [8]. Only one study to date has
developed automatic crop-field delineated polygons for
the contiguous US [9]. Among the other studies, the
geographic scope has included study areas in China [10,
11,12]; South America [13,14]; Europe [15,16,17,18];
Africa [19,20,21]; Southeast Asia [22,23]; Turkey [24];
Saudi Arabia [25]; and Australia [26]. Only one study
has implemented an automatic crop-field delineation
methodology globally [27].

Two broad approaches are used in the automatic crop-
field delineations literature: the zone method and the
edge intensity method. Most studies primarily rely on
only one of these methods, although some studies use
a mix of the two. The zone method uses contiguity of
similar pixels (single crop or sequence) and can have
multiple crops in a field polygon. An approach sim-
ilar to the zone method was previously proposed for
Iowa [7]. The edge intensity method implies one crop
type or some physical separating boundary [9].

The USDA FSA produces a confidential administra-
tive product known as the common land unit (CLU)
that is a vector-based polygon and closely resembles
a farmer field parcel. CLUs are individual contiguous
farming parcels, which have the shared characteristics
defined by FSA as: 1. A permanent, contiguous bound-
ary 2. Common land cover and land management 3. A
common owner, and/or 4. A common producer asso-
ciation [28]. These polygon-based representations of
agricultural fields were hand digitized from parcels sep-
arated by permeant land characteristics such as fence
lines and tree lines, waterways, and roads from National
Agriculture Imagery Program (NAIP) photos, which
are taken only every 3–5 years.

The limitations of the CLUs could make it the wrong
option for field-level research. They are: 1. Due to pri-
vacy issues, CLUs are not available for use outside
USDA. 2. CLUs represent a single year that are only

Fig. 1. The contiguous US, highlighted in black.

updated when there is a new operator or new NAIP. 3.
They do not always capture in-field variations including
multiple crop types. 4. CLUs contain duplicate or miss-
ing polygons or misaligned boundaries. Conversely, the
CSBs are made from public data without privacy con-
cerns, are updated yearly to capture changes in crop-
ping decisions that might split a polygon and contain
polygons in regions where CLUs may be absent.

The objective of this project is to produce CSBs for
the contiguous US. The CSB algorithm expands upon a
novel approach to capturing crop-fields by employing
the zonal method to a stack of historical CDL years. By
combining multiple years of historical CDLs, the zonal
method can accurately identify homogenously cropped
regions while maintaining information on their crop-
specific sequences and acreages. To further improve
the accuracy of the zonal method, the combined CDLs
are masked with a spatial data layer of US roads and
rails [29]. This maintains edges where homogenously
cropped fields border each other with the same crop
rotation but physically are separated by a road or rail
line. The resulting CSBs were validated by comparing
corn and soybean acreages to the NASS estimated total
planted acres, for each contiguous state and nationally.

The paper is organized as follows: The study area
and data are described in Section 2. The study method-
ology is introduced in Section 3 followed by results
and discussion in Section 4. Finally, the conclusions are
presented in Section 5.

2. Study area and data

2.1. Study area – Contiguous US

The paper uses the contiguous US as the study area
(Fig. 1), which includes the continental US excluding
the states of Alaska and Hawaii or US territories. The
contiguous US was used because the available input
data is limited to this area. In terms of US agricultural
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production, corn and soybeans represent the two largest
crops planted by acreage for this study area, which was
used to assess the CSB.

2.2. Cropland data layer (CDL)

The CDL is a 30-meter pixel-based gridded dataset
that represents all landcover across the contiguous US.
Currently, the CDL represents over 200 types of crops
or cropping patterns with high levels of accuracy for
major commodities, such as corn, soybeans, wheat,
rice, and cotton. It has been published with complete
contiguous US coverage annually since 2008. The two
major commodities, corn and soybeans, have accuracies
above ninety percent [2]. The CDL has been a useful
dataset for agricultural analysis and statistics.

2.3. Crop sequence boundaries (CSB)

The coverage of the CSBs consist of the contigu-
ous US. Currently, each of the CSBs are comprised
of eight consecutive years of stacked CDLs. The se-
quence time frame indicates the range of years included
in the dataset. Every CSB time frame has unique char-
acteristics based on its input years. For example, the
2015-2022 CSBs include the annual CDL products for
the years 2015, 2016, 2017, 2018, 2019, 2020, 2021,
and 2022. This paper assessed, a total of eight CSB
sequence time frames, across the years spanning 2015
to 2022.

2.4. NASS quick stats corn and soybean agricultural
estimate data

NASS produces planted acreage estimates for corn
and soybeans for most US states; these are considered
the ground truth for total planted acres of corn and
soybeans at the state and national levels. The planted
acreage estimates are available at the end of the sea-
son on Quick Stats [29] and are used for validation
purposes.

3. Methodology

The approach closely followed the steps described
in Beeson et al. 2020, where the first generation of the
CSBs (referred to as Crop Management Units) were
developed.

By design, the CSB polygons are developed from
only publicly available datasets: the NASS CDL [2]

and the US Census TIGER line data [30]. The CSB
polygons do not use tax parcels, land ownership, or land
operator information to define field-level boundaries.
The algorithms are an automated python library, arcpy,
script utilizing typical GIS tools requiring no manual
drawing of CSBs. As fields may divide or combine
over years, multiple CSB windows were examined. An
eight-year window was used for the first release of the
CSBs, but any duration can be used. The initial steps
are to filter and simplify CDL classes on each historic
CDL year to reduce noise, e.g., misclassified pixels,
and re-impose road and rail network line data lost when
filtered. These steps are completed in Google Earth En-
gine (GEE). The resulting rasters are then brought into
ArcGIS to be stacked and converted into polygons on a
sub-region basis. To address problematic areas, small
polygons, under 10,000 m2, are dissolved/eliminated
into the neighboring polygon to remove islands within
boundaries and clean edges using the ArcGIS eliminate
function. The dissolve/eliminate step was developed to
preserve areas that are too small to be positively defined
as a crop-field. These areas are typically on the edge
of a field and are comprised of mixed pixels that can
vary year-to-year due to the 30 m pixel resolution of the
CDL. This provides further refinement in the CSB to
reduce gaps or voids but as a result it increases the area
of certain boundaries. Multiple processor environments
allow for faster completion of this step as sub-region
pools can be spawned to a core when available. Here,
the Amazon Web Services (AWS) environment avail-
able to the USDA has 96 cores. The resulting CSBs rep-
resent areas of similar cropping sequences for the des-
ignated years, while separating areas with boundaries
that have different cropping sequences. These steps can
be repeated for the 8-year moving window to produce
the contiguous US resulting in at least eight unique
layers of CSB history for all lower 48 states (2008–
2015, 2009–2016, 2010–2017, 2011–2018, 2012–2019,
2013–2020, 2014–2021, and 2015–2022).

The CSBs were assessed with original CDL values
and USDA NASS official published corn and soybean
acreage to calculate percent errors that provide a statis-
tically empirical assessment of the CSB accuracy [29].
The results described will inform readers on the CSBs
creation and their accuracies.

3.1. CDL pre-processing

The primary data input to the CSBs is the NASS
CDL [2], which is also the input for numerous other
field delineation algorithms [5,6,7,8], and [9]. In each
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Fig. 2. Comparison of 2014 CDL before (left) and after (right) filtering.

of these, the CDL undergoes some degree of pre-
processing for two major reasons. First, noise reduc-
tion in the CDL is needed. Noise in the CDL is defined
as isolated pixels classified with erroneous land cover
types because in general CDL accuracies are reported
to be between 85% and 95% correct for major crop
types [2]. The noise in the CDL is well documented [31]
but has been less in the most recent years [32], making
noise reduction less important but still useful in earlier
years. Second, even in areas with limited noise, sim-
plification is needed given the focus on cropland and
the desire to limit the number of unique sequences with
stacking multiple years (Fig. 2).

Setting aside some of the important computing steps,
four structural changes to the data are made during
pre-processing: resampling, reclassifying, filtering, and
masking known edge features (roads and railroads).

Resampling: The first change to the raw CDLs is
a resampling, which is used to alter pixel size, from
30-meter resolution to 10-meter resolution in Google
Earth Engine. The purpose of this step is to improve the
masking (reimplementation) of road and rail networks.
Because many rural roads and rail routes are less than
30 meters in width, imposing them on a 30-meter grid-
ded dataset introduces errors in field edges, particularly
where the transportation features run diagonally across
the gridded data. The edge noise, without resampling,
leads to a downward bias in boundary calculated areas
by assigning too many pixels to roads and rail lines.

Reclassifying: The original CDLs have over 200 dif-
ferent classifications for land covers, so stacking mul-
tiple years of CDLs can lead to hundreds of thousands
of different unique sequences. The reclassification step
aggregates the land cover types into a smaller set of
classes. The new classes are based on grouping geo-
graphically disparate land cover types together. This
keeps the integrity of the crop boundaries in areas with

geographical proximity while reducing the quantity of
unique sequences. For example, CDL land cover classes
for corn and double cropped corn, which include the
values corn (1), sweet corn (12), popcorn (13), dou-
ble cropped winter wheat/corn (225), double cropped
oats/corn (226), double cropped triticale/corn (228),
double cropped barley/corn (237), and double cropped
corn/soybeans (241), are aggregated to one class.

Filtering. A number of other projects have devel-
oped alternative methods for filtering and smoothing
the CDL [2,31], and [32]. For the CSBs, the filtering
process iterates through multiple steps. First the CDL is
filtered using a focal mode based on patch sizes greater
than 40 pixels with a radius of four pixels and run with
eight iterations. Then the CDL is filtered again (with-
out patch size limits) to reduce speckled CDLs and
exaggerate field-shaped boundaries.

Reimposing transportation features: To correct for
any misclassification of roads and rails that may have
been introduced by the filtering process, or that might
have been misclassified in the original CDL, the CSB
process uses publicly available transportation feature
classes to impose road and rail networks, which are im-
ported from Census Tiger files. The roads are available
on GEE, but the rail network has to be uploaded as a
local asset.

3.2. Zonal identification

Using the modified CDLs for each crop year, the
CSBs are developed through six steps: subregion defi-
nition, stacking, masking, polygon conversion, refine-
ment, and crop code repopulation.

Subregion definition: Given the large processing re-
quirements for the following steps, each processed CDL
is split into subregions. These subregions are defined us-
ing the transportation network features. This avoids the
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problem of splitting CSBs along administrative bound-
aries (e.g., states and/or counties lines) or biophysical
boundaries (e.g., watersheds). The size of the subre-
gion and the number of subregions allows for efficient
multi-core processing.

Stacking:The current CSBs are developed using a
stack of eight CDL years, but any duration could be used
(Fig. 3). A shorter window, using fewer years, will result
in larger polygons that may not divide similar cropping
areas as much. A longer window, using more years, will
result in smaller polygons that possibly divide the area
more than expected. If a project spans a 10-year period,
it would be appropriate to use the same 10-year window
CSB to match. If a project studies rotations on a 3-year
basis, then a CSB window in multiples of three would
be appropriate (e.g., 3, 6 or 9 years). The 8-year window
was chosen as a good compromise for not over or under
dividing with the results most resembling fields.

Masking: All sequences that do not involve any crop
classes or only one year of cropping are removed. These
areas may be forest, pasture, or developed land cover
types, to name a few.

Polygon Conversion: Each zone of adjacent pixels
with the same sequences are converted into polygons.
In addition to aggregating (joining) similar pixels, the
conversion step simplifies the polygons to reduce the
number of extra vertices. The polygons are projected
to Albers Conical to prevent adding artifacts that look
like steps in otherwise straight lines while in raster
format. The original raster files exported from Google
Earth Engine are in Geographic projection (WGS1984),
which reduces the stairstep appearance of the roads and
rails because in the US most of them were constructed
on longitude and latitude lines. Once polygons they
can be projected without introducing these unwanted
artifacts.

Refinement: The ArcGIS Pro eliminate function was
used to avoid downward bias in area, thus preserving
the aggregate total area as much as possible, resulting in
a continuous border between CSB polygons. The model
runs elimination four times to dissolve problematic ar-
eas into larger neighboring polygons. The first time the
selected polygons are less than 100m2; in the second
they were less than 1,000m2; and for the last two, the
polygons are less than 10,000m2.

Repopulating: Repopulating the attribute table uses
zonal majority of CDL classes as well as county and
state locations. A unique ID is added after all sub-
regions are joined.

3.3. CSB acreage validation

One way of validating the accuracy of the CSBs is
to compare the CSB derived acreage to the available
ground truth planted acreage and against the original
CDL. Ground truth data are available for a wide range of
crops on the USDA NASS Quick Stats website. Planted
acreages on Quick Stats are available at the county,
state, and national levels.

To calculate the CSB-based acreage, a crop type is
assigned to each CSB based on the majority class of
CDL pixels within each polygon. For a given state and
crop, the CSB-derived, state-level planted acreage is the
sum of the areas of each CSB within the state containing
the crop of interest (1)

Acrop =
∑

csb∈state
AcsbIcsb (crop) (1)

where,
Acrop = the area of the crop in the state, Acsb is

the area of the CSB, Icsb(crop) is equal to one if the
CSB has the crop and zero otherwise, the sum is over
CSBs within each state. For a national sum the lower
48 states are totaled. Here values for the contiguous US
are reported.

Once the state and national estimates are obtained
from the CSBs, the error can be calculated using the
percent error:

PEcrop =
Acrop − Tcrop

Acrop
× 100

where PE is the percent error and Tcrop is the ground-
truth planted acreage of the crop derived from Quick
Stats. Here each CSB is based on eight consecutive
years of CDL, and year of the last CDL of the eight
is the CSB year. Thus, the CSBs represent a sequence
of years, and the percent errors for each CSB and crop
type provide an indication of the quality of the CSBs
over time and by crop.

4. Results and discussion

This paper described the CSB creation methodol-
ogy by defining the steps to the algorithm and their
importance to its development. The computationally
intense process described successfully combines multi-
ple publicly available geospatial datasets into a single
geospatial output file for the contiguous US. The re-
sulting file was assessed with original CDL values and
officially published corn and soybean acreage to calcu-
late percent errors that provide an empirical assessment
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Fig. 3. Creation of sequence zones by stacking eight filtered CDLs (left) and using combine raster function (center), then edge artifact cleaning to
final CSBs (right).

Fig. 4. Box and whisker plot of the CDL and CSB windows and their error to the USDA NASS Quick Stats official planted acreage value for corn
and soybean. Each box is made up of the eight years used in the associated CSB window.

of the CSBs accuracies. The results described in this
section will inform readers on the CSBs creation and
their accuracies.

Initial 8-year CSB creation for the contiguous US
took about five days using a 96-core AWS workstation.
The process is fully automated, but the sizes of the 86
subregions are not balanced. Some sub-processing re-
gions are completed in a couple hours while a few takes
five days. This could be improved to reduce the time to
two days. A majority of the processing time was spent
on the dissolve/elimination step (ArcGIS Pro eliminate
function), which incrementally reduces the number of
total polygons (Fig. 3). This step is run four times by
dissolving the selected polygons into the neighbor that

shared the longest border. The first dissolve/elimination
process started at nearly 500 million polygons and dis-
solved about 100,000 that were less than 100 m2. The
second pass selected 250 million polygons that were
less than 1,000m2. The third pass selected another 100
million polygons that were less than one hectare. The
last pass started with over 50 million polygons and
reduced the remaining by 50 percent. After the dis-
solve/elimination step, only polygons greater than one
hectare were kept as final CSBs which reduced the
resulting 25 million polygons to fewer than 20 mil-
lion. Absent incrementally increasing the selection size,
the tool often fails or takes days. Without this step the
polygons only cover about 100,000,000 hectares which
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Table 1
Percent error for CSB’s compared to Quick Stats national planted acreage for corn and soybean

Corn Soybean
Year Quick stats (ac) CSB (ac) Error Quick stats (ac) CSB (ac) Error
2015 88,019,000 89,888,422 2.1% 82,660,000 87,120,721 5.4%
2016 94,004,000 96,665,222 2.8% 83,453,000 87,644,495 5.0%
2017 90,167,000 93,440,276 3.6% 90,162,000 96,119,359 6.6%
2018 88,871,000 92,904,634 4.5% 89,167,000 95,515,323 7.1%
2019 89,745,000 93,459,732 4.1% 76,100,000 80,548,849 5.8%
2020 90,652,000 95,060,605 4.9% 83,354,000 88,401,544 6.1%
2021 93,252,000 97,139,581 4.2% 87,195,000 93,138,351 6.8%
2022 88,579,000 93,071,290 5.1% 87,450,000 94,088,968 7.6%

is about 34,000,000 hectares shy of the reported US
cropland area. With this step, the CSBs report about
8,000,000 hectares over the expected US acreage for
2022.

The area totals for each crop follow the accuracy
of the initial CDL input. In general, compared to the
USDA NASS Quick Stats national acreage, values pro-
duced by the CSB are higher than the CDL (Fig. 4).
This is due to the elimination step forcing the poly-
gons to match their neighbors’ edges by expanding into
mixed pixels of non-cropland or edge noise. Nationally
the CSB values for corn and soybean acreage are con-
sistently greater the official estimates from Quick Stats
(Table 1). For corn, the percent error increases with
time. The percent error for soybeans tends to increase
with time, though it varies. Prior to 2019 the CDLs typ-
ically underpredict crop acreages the elimination step
helps the CSBs replicate the Quick Stats values to a
closer degree (Table 1). In later years, after 2019, the
CDL improved methods for classifying mixed pixels,
giving weight for those pixels to be classified as crop-
land ultimately overestimating Quick Stats values. This
trend of overestimating is preserved as it is a derivative
product of the CDL.

When CSB acreage for corn at the state level was
compared to Quick Stats reported planted corn acres,
the results are generally the same nationally by tend-
ing to overestimate like the CDL (Fig. 5). The CSB
acreage was higher with a slope value above 1.0 with
few outliers at the lower values. However, the earliest
year, 2015, had a lower slope value at 0.888. The largest
outlier was Nevada and has under reported values in
2015 and 2018.

For soybean CSB acreage at the state level, the slope
value has trended above 1.0 in the last several years
(Fig. 6). Generally, soybeans have greater outliers in
both higher and lower acreage than Quick Stats but con-
tinue to follow the national trend and generally over-
estimate. Some of the outlier states with lower CSB
areas are Texas, Oklahoma, and Florida. New Jersey

and Delaware are outliers in the positive direction. Soy-
beans tend to have a wider range of results, and the r2

value is slightly lower than that for corn.

4.1. CSB uses

In Abernethy et al. 2023 [33], a field-level model
for pre-season crop type prediction using CSBs was
introduced. The CSBs served as field analogs in a ma-
chine learning model leveraging historical crop rota-
tions to predict the crop to be planted for the current
year. CSB-based predictions were shown to be competi-
tive with previous pixel-based forecasting models when
compared to FSA CLU ground-reference data, and at
a reduced computational burden. Crop type summaries
by CSBs provide a computational efficient procedure
for crop type forecasting over a large area [33].

Another study has started to use the CSBs to validate
the imputation work from NRCS Conservation Effects
Assessment Project (CEAP) Agricultural Policy Envi-
ronment eXtender model (APEX) data. They verified
the rotation/crops that were imputed from the CEAP
survey data to additional NRI points/locations using the
CSB. There was a strong correlation (96%) between the
data provided by the surveyed farmers and the sequence
of crops derived by CBSs, reinforcing the reliability
and accuracy of the data collected.

USDA NASS used the CSBs to identify potential new
farms to include in the National Agricultural Classifi-
cation Survey (NACS). The number of potential farms
identified through this process varied with state, ex-
ceeding 28,000 in Florida [34]. The NACS is used to
determine the farm status of the potential farms. Most of
them do not meet the definition of a farm, which is any
operation that produces or has the potential to produce
at least $1000 in a year. However, each farm identified
improves the coverage of the NASS list frame.

USDA ARS used the CSBs to create crop rotation
summaries for management file input to a carbon model
using Markov Chain. There are millions of possible
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Fig. 5. CSB corn planted acreage compared to Quick Stats by state (fit line is dashed and the one-to-one line is solid).

Fig. 6. CSB soybean acreage compared to Quick Stats by state (fit line is dashed and the one-to-one line is solid).

crop sequences across the US. By summarizing them
into several dozen options, the model input files are
manageable while minimally affecting model response.
This method would be useful to other modeling efforts,
and rotation summaries could be included in future CBS
attribute tables. CSBs are used the same way in the
Nitrogen Recommendation Tool for precision nutrient
management in OK and KS [35].

Furthermore, CSBs are being considered to support
mapping of winter cover crop presence/absence in the
contiguous US the USDA greenhouse gas assessment.
USDA ARS and USGS are comparing CSBs with addi-
tional field boundary polygons, public and private, to
assess accuracy and applicability for remote sensing of
agricultural land cover (cover crops, tillage intensity).

4.2. CSB limitations

CSBs are a derivative product of the CDL and will
propagate misclassifications found in the CDL. While
this was reduced by filtering and reclassifying the CDL
during CSB creation, false islands and bands in other-
wise continuous fields will exist. Users can identify and
dissolve those features if they wish to reduce unwanted
features, but this might change the area totals reported.
Additionally, there are artifacts from converting raster
formatted products to polygon features that retain grid
shapes when a straight line is warranted. This presents
as CSB not describing the field perfectly which is ac-
ceptable because these are polygons of continuous crop-
ping sequences as seen in the CDL, not field boundaries.
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Users can smooth the CBSs to match their needs, but
again may introduce new errors to the area totals. Future
versions of the CSB will minimally smooth the poly-
gons, but a certain amount of grid shapes will remain to
not introduce large errors. Overall, CSBs can enhance
the signal and reduce the noise of remotely sensed data
to supply the full population versus a sample for a more
complete description.

5. Conclusions

Creation of the CSBs is a repeatable automated pro-
cess for building crop-field polygons with accurate rep-
resentation of crop areas. Geospatial research into auto-
matic crop-field delineation has been studied for many
years; however, with advancements in accessibility to
cloud computing and a growing historical CDL archive,
it is now possible to produce the contiguous US prod-
ucts demonstrated in this paper using this method.

The CBSs were designed to be flexible and customiz-
able. Users can extract their specific study areas from
the contiguous US files, further refine the polygons to
reduce certain CDL artifacts, and spatially join other
datasets to the CBS attribute table to perform previously
difficult spatial analyses. In addition, if the settings used
to create the publicly available CSBs (https://www.
nass.usda.gov/Research_and_Science/Crop-Sequence-
Boundaries) differ from users’ needs, they can create
their own using the code provided on the GitHub site
(https://github.com/USDA-REE-NASS/csb-project).

The CSBs may benefit from future refinement. The
current version represents an early iteration, prioritiz-
ing a uniform spatial and temporal methodology. This
produces a streamlined product but likely at the cost
of accuracy for some geographical areas due to unique
factors that vary across physical landscapes. The cur-
rent methods were focused on representing field-level
boundaries and crop sequences with fixed computing
resources to complete this study. The CSBs may be im-
proved by using other inputs beyond the CDL like addi-
tional satellite imagery or administrative data. They can
be improved by expanding the methods to more com-
plex algorithms and tuning for local variability at the
state level. Additionally, improvements in the CDL like
going to 10-meter resolution may improve field-level
polygons. These new considerations and advancements
could enhance CSB accuracy.

This approach can provide a solid methodology for
advancing automatic crop-field delineation in the US
and around the world. The CSBs have been useful with

some recent examples including predicting preseason
planted acreage, verifying crop types and rotations,
identifying potential farms for new survey participants,
and determining survey reliability. We believe this will
be useful for other types of studies and can be utilized
by researchers with needs for field-level polygons de-
picting agricultural land cover in the U.S.
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