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Abstract

There are many applications in which one seeks to combine multiple
estimators of the same parameter. If the constituent estimators are
unbiased, then the fixed linear combination which is minimum variance
unbiased is well-known, and may be written in terms of the covariance
matrix of the constituent estimators. In general, the covariance

matrix is unknown, and one computes a composite estimate of the
unknown parameter with the covariance matrix replaced by its maximum
likelihood estimator. The efficiency of this composite estimator

relative to the constituent estimators has been investigated in the
special case for which the constituent estimators are uncorrelated.

For the general case in which the estimators are normally distributed
and correlated, we give an explicit expression relating the variance

of the composite estimator computed using the covariance matrix, and
the variance of the composite estimator computed using the maximum
likelihood estimate of the covariance matrix. This result suggests

that the latter composite estimator may be usefulin applications in
which only a moderate sample size is available. Details of one such
application are presented: combining estimates of agricultural yield
obtained from multiple surveys into a single yield prediction.

Introduction

The need to combine estimators from different sources arises in many

fields of application. In agriculture estimates may come from different exper-
imental stations; in the medical sciences there may be multi-sites or multiple
studies; sample surveys may contain subsurveys at different locations. Often



making a prediction requires the combination of estimators. The present
analysis was motivated by a model to predict agricultural yield. However,
the model is generic, and occurs in a variety of contexts. The specifics of the
application are discussed in Section 4.

It is perhaps surprising that the earliest methods for combining estimators
were nonparametric. Fisher (1930) and Tippett(1931) proposed methods for
combining p -values obtained from independent studies. Fisher was moti-
vated by agriculture and Tippett by industrial engineering.

The parametric problem was first posed by Cochran (1937), who was
also motivated by an agricultural problem. For simplicity suppose that we
have two estimators T} and T3 of 8 from a A/ (6, %) and N (0, c2) population,
respectively. The combined estimator

(11) T = w1T1 + ’lUgTQ
with wy = o072/(072 + 052),wy = 05%/(07% + 03%) is unbiased and has
variance
o2
(1.2) V(T) = -2 < min(o?,02).

2 2
oy + o5

Consequently, the combined estimator dominates either single estimator.

In practice the variances are unknown, and estimates 6%, 63 independent
of Ty, T5, are substituted in w; and w,, that is,

(13) T* = 'lf}lTl + ’UAJQTQ.

Of course, now the variance of T* is no longer minimum variance, but it
is unbiased.

Cochran’s paper was the genesis for a sequence of papers. We briefly
describe these in chronological order. Graybill and Deal (1959) started with
the Cochran model and assumed that the estimators 62 and 63 are indepen-
dent and that each arises from a sample of size larger than 9. Under this



condition, they show that 7™ is uniformly better than either 7} or 15, where
better means smaller variance.

Seshadri (1974), motivated by balanced incomplete block (BIB) design
considerations, assumes that there is an unbiased estimator b of the ratio
b=0?/(c% + 02), independent of T} and T, . Then the estimator

(1.4) TO = (1 - )T + bTy

is unbiased, and var T < min (varT},varTy) provided Var b < v? and Var
(1 —-b) < (1—1b)>. The key point is that in certain BIB designs there is an
intra-block and inter-block estimator, and also an estimator b.

Zacks (1966) starts with the assumption that the ratio p = 02/0? is
unknown, and creates an estimator

(1.5) T® = (511 + T2) /(5 + 1),

where p is independent of T} and T5. Then T'® is unbiased. The efficiency
of T cannot be given in closed form, and Zacks provides graphs of the
efficiency relative to the estimator 7 with p replacing p.

When the sample sizes of the two samples are equal to n, Cohen and
Sackrowitz (1974) discuss estimators of the form

(1.6) TG = &4 Ty + G, T,

where «; are functions of sample variances and are chosen with respect to
a squared error loss function normalized by o?. They determine the sample
size n for which T is superior to either T} or Ts.

Because the estimators T; of the mean and s? of the variances are location
and scale estimators, Cohen (1974) considers a location-scale family as a more
general construct than the normal family. Again, the combined estimator is

(1.7) TW =T+ 0Ty, by +by =1,



where now by = c52/(6% + 62), c is a suitably chosen constant, and 6% and
62 are appropriately chosen estimators.
2

The extension from combining two estimators to combining £ estimators
from k normal populations N(6,02), 1 = 1,...,k, is discussed by Norwood
and Hinkelmann (1977). Here

(1.8) TO =4y Ty + ...+ T

with ; = 672/ 54 &;%. They show that Var (T®)) < min {Var T;}if each
sample size is greater than 9, or if some sample size is equal to 9, and the
others need be greater than 17.

For the case k = 2 Nair (1980) computes the variance of T* as an infinite
series, and as a function of two parameters, o? and o = nj0?/ngo3. Of
course, it is symmetric and can be restated as a function of o2 and 1/c.

Following the formulation of Cohen and Sackrowitz (1974), Kubokawa
(1987) provides a family of minimax estimators under normalized quadratic
loss functions. Green and Strawderman (1991) also consider quadratic loss
and provide a James-Stein shrinkage estimator. The use of a quadratic loss
function is extended to the multivariate case by Loh (1991), where now we
have normal populations N(#,2;) and N(#,X,). As in the univariate case,
there are mean estimators él, 6, and independent covariance matrix estima-
tors 51, 52, each having a Wishart distribution, the loss function is

(1.9) L(6,0,51,5) = (8- 6) (ST + 2740 — 6)

The estimator

(1.10) 0= (S; + SyH)~YST0, + £516,)

is shown to be best linear unbiased.

The model that we here consider is that there are k¥ normal populations
N(8,02),i=1,..., k. The data available are k unbiased estimators T3, . .., T}
of . However, the vector T = (T3,...,T}) has covariance matrix %, for



which there is a sample covariance matrix S having a Wishart distribution
W(Z, k,n). Furthermore, S and (71, ...T}%) are independent.

When ¥ is known, the linear estimator

(111) §:w1T1+...+wka, wl—{—...—i—wk:l,

/

with w;, i = 1,...,k, fixed is unbiased. Let w = (wy,...,w;) and e =

(1,...,1). For the choice

(1.12) w=(eT™H/(e'T e),

# is also minimum variance. Furthermore,

eXE(T —0e) (T —be)]lEle 1

1. Var(f) = = ,
(113) ar (0) (e'E1e)? e’y te

That Var () is minimum variance follows from the Cauchy-Schwartz inequal-
ity:

(1.14) (WESw)(e'Se) > (w'e) =1

with equality if and only if (1.12) holds. Also,

(1.15) (e€x7'e)"! <min{c?,..., 07},

which follows from (1.14) with w =¢; = (0,...,0,1,0,...,0)".

When ¥ is unknown it is estimated by S, and we consider the estimator

(1.16) 6= (e/STIT)/(e'S te).
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The estimator ¢ is unbiased and has variance

(1.17)

Var(é) = 555T615_1[(T —(jg)_lgf); oS e

e€S-1v5 e

- STeser

In the next section we provide a proof of the basic result:

(1.18) Var(d) = (2= ;) Var ().

2. Proof of the Theorem

The Wishart density of S is

(21)  f(S) = Clk,n) | 5 |772| § |22 exp(—% tr £718),S > 0,

where

b by Tpoon—i41 1
C(k,n)={2% 7" 1 HF("T)}
=1

and ¥ > 0 (that is, X is positive definite).
Let Y = £-35%72, so that the density of Y is

(2.2) fY) = Clk,n) | v =52 emp(—% Y)Y > 0.
With b = S~ 2e
_ b'Y ~2h
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Because the density (2.2) is orthogonally invariant, that is, L(G'YG) =
L(Y) for any orthogonal matrix G, a judicious choice of G allows one to put
(2.3) in a more convenient form. Let e; = (1,0,...,0), and choose G so that
the first row of G is ¥’ /v/b'b and the remaining k — 1 rows of G complete an
orthonormal basis for G. Then, by construction, Gb = +/b'be;. Consequently,
with Z = G'Y @, (2.3) becomes

~ e Z_‘2€1 1
Var(f) = ] —t—"=] —.

ar®) = el 7
Note that b'b = 'S e, and recall that Var(d) = e/’ e, so that

e\ 7 %e;

] Var(é)

Remark: For any vector a of unit length, and a positive definite matrix
B,d'B%a > (a/Ba)?. Hence (2.4) demonstrates that Var(f) > Var(f) under
the hypothesis that S and T' = (11,...,T})" are independent, but with no
distributional assumptions on S or 1.

Now the task of proving the theorem is reduced to computing the expec-
tation on the right side of equation (2.4). Towards that end, partition the
k x k matrix Z and its inverse as

211 2’1 -1 Z11 271
Z = , LT =1 _ = ,
( 21 > (21 Zz2>

where Zqo and Zgy are both (k—1) x (k—1).

In what follows we make use of well-known relationships between the
blocks of Z and Z~'. (See, for instance, Anderson, 1984.) Employing these
relationships, and that (I — wu/)™! = T + 1:“;,“ the expression inside the
expectation brackets in (2.4) can be written as:

t 72 =2 ot

e1s ey Zjt 4z
I 7—1,\2 =2
(€1Z e1) 211

(25) =1+ 211 ’U,,ZQ_21U,

where u = Z2—21/221/1/211 and (2.4) becomes:
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(2.6) Var(9) = 1+ E(zy v Z3}u)]Var().

The density of Z has the form (2.2), which can be written as

(2.7)
f(Z2, z11,u) = C(k,n) | Zaa I("Sk)

1 Z_ 1 (n—k—1)
exp(—-Z—trZzg)zfl lewp(—-z—zll)(l-u,’u) P

Again, using orthogonal invariance, the expectation in (2.6) is

(2.8) Elenv' Zptu) = Ck,n) L 1,13,
where

© niz 1 n+ 2, 2
L = / 2z lea:p(—izu)dznzf‘(
0

L = / wm1—wmt?mu=w—mn%ﬁﬂk;?i%prﬁ+2
ulu<y

),
n— 1
13 = / (6’122_216) ' ZQQ l——f—lE €£Cp(——tT‘Z22)dZ22.
Z22>0 i 2

The integral I, can be evaluated using polar coordinates; it is also a Dirichlet
Integral of Type-I, (see Sobel, Uppuluri and Frankowski, 1977). To simplify
notation in I3 let Q = Zag, so that Q is a (kK — 1) x (k — 1) matrix having a
Wishart distributon W(I,k — 1,n). Then I3 = £(Q™1)1;/C(k — 1,n). But
this expectation is known (see e.g. Kshirsagar, 1978, p. 72) so that

n k-1 n“k+1 —
I =[(n~ k2% r 7 (g™

Combining these results we obtain

Var(d) = 1+ L1I5)Var(f)
- - ;Var(é)
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3. The Relative Efficiency of § for k=2 and n=N — 1
The result that Var (0) = 2=L Var (6) coincides withwhat intuition sug-

~ -~ ~

gests: when k = 1, Var (0) = Var (); when k > 1, Var (6) > Var (6), and for
all k, limy— co Var () = Var (#). But the result gives more precise infor-
mation that helps one to assess the efficiency of the Graybill-Deal estimator
for a given sample size.

Consider the case k = 2, N = n—1. If, without loss of generality, we take

011 = min {011,092}, then Var (8) < min (011, 092) when

1 < (o011 — o12)*
N"“ 3 - 011092 —0%2

(3.1)

In the special case for which cov (71,7) = 0, (3.1) is 1/(N — 3) <
o11/022 < 1, which implies that Var (é) < min (o013,092) for all N > 5.
Note that this does not contradict the previously quoted result of Graybill
and Deal (1959): their hypothesis allows N; and NV;, the sample sizes for
the respective constituent estimators, to be unequal; whereas the current
theorem was derived under the assumption that N; = Ny = N.

Writing 011 = a?032,0 < a < 1, and denoting the correlation between T}
and Ty by p, (3.1) can be written as

1 (o —p)?
(3.2) NT3S T
Then it is apparent that if one varies the parameters « and p so that a—p —
0, the sample size N necessary for (3.2) to hold increases without bound.
But this also is intuitive: @ — p — 0 is equivalent to 0 — T,. Given a rough
initial estimate for the parameters « and p, one may use (3.2) to obtain
some idea whether the Graybill-Deal estimator dominates the better of the
two constituent estimators for a given sample size.

Taking the special case 017 = 092, (3.2) becomes

1 1—-p
< .
N—-3"1+4p

9



This form of equation (3.1) implies that the sample size for (3.1) to hold
increases without bound as p — 1. Once again, this is intuitive: to say p is
close to 1 means the estimator 75 provides essentially the same information
about # as the estimator 7}, and hence the composite estimator cannot be
expected to provide much more information than that provided by 7} alone.

4. An Agricultural Application: Predicting Yield

The National Agricultural Statistics Service (NASS), an agency of the
USDA, makes predictions of yield (defined as production per unit area) for
the major US agricultural commodities, both at the level of the primary
region of production for the commodity, and also at the level of the indi-
vidual states that comprise that region. A diverse body of information is
employed in making a yield prediction, and the process of incorporating that
information into a single estimate of yield is a complex task that relies on
the experience and judgment of commodity experts, as well as statistical
methodology. The goal of research into composite estimation at NASS is not
to replace that experience and judgment, but to apply appropriate statisti-
cal methodology to obtain a consistent means of combining key estimators
of yield into a single yield prediction, and thereby provide a useful starting
point for the process of making a monthly yield prediction.

There are two major types of surveys that form the basis for estimates
of final yield. One is a survey that makes various measurements and counts
for plants from randomly located plots in randomly selected fields having the
commodity in question. The same plots are visited several times throughout
the growing season, and the particular counts and measurements which are
made depend on the point in the growing season at which the data is collected
and the development of the crop, as well as the particular commodity in
question. These survey results are used to produce a yield prediction using
biological models of yield. The other type of survey, directly asks randomly
selected producers of the commodity for their best estimate of the yield they
anticipate for their own fields. This survey is also conducted at intervals
throughout the growing season. These survey data are the basis for more
than one estimate of yield, the estimates depending on how the data are
summarized.

At some point after the crop has been harvested, the actual yield is known
with some degree of accuracy. Although yield certainly varies widely from
year to year, it is reasonable to assume that over some ‘moving window’ of

10



time the covariance structure and the biases for a set of these key estimates of
yield (for a given combination of commodity, geographic region, and month
of the prediction) are relatively stable, and hence the covariance structure
and biases can be estimated from historical data.

There are (at least) two possible ways to deal with the biases in the
estimators. If one arbitrarily enforces the constraint that wy + ... +wg =1,
then among all such linear combinations, w1} +. ..+ w7k, of the constituent

estimators 77, ..., T}, the linear combination with the smallest mean square
error is:

~  eMTT
(4.1) b= e
where T' = (T),...,T¢) and M is the mean square error matrix. Then, in
analogy with the development in the case for which T3, ..., T} were unbiased,

one actually computes

e M~1T

4.2 ="
(4.2) eM-1e

where M is an estimate of M based on the historical data. The proper-
ties of the estimator in (4.2) are not well understood. The condition that
w1+ ...+ wg = 1 has a very natural statistical interpretation in the unbiased
setting: the condition insures that the composite estimate is also unbiased.
In the more general setting for which the constituent indications may be
biased, the condition that w; + ... 4+ w; = 1 has no such natural statisti-
cal interpretation, and seems to be merely a mathematical convenience. In
particular, the composite estimator in (4.2) is, in general, biased. An al-
ternative procedure is to use the historical data to estimate the biases of
the constituent estimators, and then use these bias estimates to calculate
‘corrected’ estimators which are unbiased, and proceed as discussed in the
first section of the paper. There are several statistical issues that arise in
considering this latter procedure that need to be addressed. However, in the
majority of applications to yield prediction that we have examined thus far,
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the latter procedure has resulted in a somewhat smaller mean square error
of prediction than that resulting from the former procedure.

Security issues preclude a presentation of an actual NASS data set. Nev-
ertheless, in order to give the reader some idea how the methodology works
in practice, a masked data set has been prepared. In Table 1, the columns
headed ‘farmer reported yield’ and ‘biological yield model’ correspond to 14
years of yield predictions based on surveys of the anticipated yield reported
by producers, and of the crop itself, respectively. These data have already
been corrected for bias, using bias estimates based on historic data. To mimic
the operation of a moving window of time, each of the 14 estimates in the col-
umn labeled ‘composite estimate’ is calculated using the sample covariance
matrix based on the other 13 years. The column headed ‘panel of experts’
gives the yield prediction produced by a group of commodity experts, who
are privy to a wide variety of information. That information includes not
only the two constituent estimators of yield listed in the table, but other
yield estimators, the raw survey data, yield estimates from previous months,
data on weather, growing conditions, and cultural practices, reports on ge-
netic improvements, information on economic inputs to the crop, prices, and
so forth. The column headed ‘true yield’ is the last value of yield for the
combination of year, geographic area and commodity in question which has
been published by the USDA.

Note that the root mean square error for the composite estimator was less
than that for either of the individual estimators of yield, and only slightly
more than the root mean square error for the yield estimate produced by
the panel of commodity experts. This latter observation is particularly re-
markable in view of the bulk of additional information relevant to predicting
yield that is available to the panel. The results displayed in Table 1 general-
ize to all the combinations of crop, month, and geographic region which we
have tried so far: the composite estimator, on average, does about as well,
or a little better, as a predictor of yield than the estimate of yield produced
by the panel of experts. In some instances, the composite estimator does
quite a bit better than any of the competing estimators, and seldom is it the
case that the mean square error for the composite estimator is very much
larger than the mean square error for the prediction based on the estimate of
yield produced by the expert panel. Thus there is evidence that a significant
reduction in the mean square error in predicting yield can be achieved by
computing a Graybill-Deal type composite estimator as an initial step in the

12



overall yield prediction process.
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Table 1

Predicted yields (weight per area) of commodity Z for state X in month Y.

farmer

year reported yield yield model

88.0
82.5
83.0
73.5
79.0
82.0
83.0
80.8
81.0
79.0
64.0
80.5
83.0
- 81.5

el e e )
e o I > © 00~ O T W

biological

Root Mean Square Error:

Farmer Reported Yield 3.06

Biological Yield Model
Composite Estimator
Panel of Experts

3.92
2.68
2.58

87.5
80.0
86.5
79.0
84.5
83.5
79.8
84.0
83.0
79.0
76.0
83.8
87.0
78.5

14

composite
estimate

87.8
81.5
84.2
75.3
81.3
82.5
81.8
81.8
81.7
79.0
68.3
81.6
84.4
80.4

panel
of exports

89.5
82.5
85.8
76.3
83.3
83.8
85.0
81.3
81.8
81.0
67.5
83.0
85.0
82.0

true
yield

87.8
87.3
85.3
76.8
78.3
89.0
82.5
84.0
82.3
80.8
68.3
83.0
85.0
81.8
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