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Goal and technical approach

I Goal: Model sequence of in-season forecasts and estimates of
crop yield

I NASS Crop Production Report–state and national yield
estimates

I Reproducibility with appropriate measures of uncertainty

I Approach: Bayesian hierarchical model–synthesis of data
from several surveys

I Enforce physical relationships at two spatial scales
I Incorporate variety of auxiliary data types

Challenge: From data to publication in 3-4 days
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NASS crop yield surveys and reports
Yield measures output per area harvested (bushels/acre)

Yield for state j : µj , j = 1, 2, ..., J

Yield for speculative region: µ =
∑J

j=1 wjµj

Weights wj ∝ harvested acres for state j

NASS surveys: Objective Yield (OYS), Agricultural Yield (AYS),
Acreage, Production, and Stocks (APS)
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Role of the Agricultural Statistics Board (ASB)
Expert panel of commodity specialists

I Current and historical survey ‘indications’
I Other information, e.g., weather, crop condition ratings
I Consensus on yield

Publish national and state estimates

OMB Standard 4.1 (2006): “Agencies must use accepted theory and methods when

deriving...projections that use survey data. Error estimates must be calculated and

disseminated to support assessment of the appropriateness of the uses of the estimates

or projections...”

Challenge: Capture expert assessment in a manner that is
1) easily reproducible and 2) includes appropriate measures
of uncertainty
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Example survey data
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Bayesian hierarchical model for speculative region
Notation
I µt–true yield

I yktm–observed yield

I k ∈ {O,A,Q}–survey index

I t ∈ {1, ...,T}–year index

I m ∈ {months}–survey month

I m∗–forecast month

Region data model

yktm∗|µt ∼ indep N
(
µt + bkm∗, s

2
ktm∗ + σ2

km∗
)
, k = O,A (1)

yQt |µt ∼ indep N
(
µt , s

2
Qt

)
(2)

Region process model

µt ∼ indep N
(
z
′
tβ, σ

2
η

)
(3)

Diffuse prior distributions

I Data model parameters: Θd ≡
(
bkm∗, σ

2
km∗)

I Process model parameters: Θp ≡
(
β, σ2

η

)
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Bayesian hierarchical model for speculative region
Likelihood function–assuming conditional independence

[yO , yA, yQ |µt ,Θd ] =
∏

k∈{O,A,Q}

[yk |µt ,Θd ] (4)

Posterior distribution

[µt ,Θd ,Θp|yO , yA, yQ ] ∝
∏

k∈{O,A,Q}

[yk |µt ,Θd ][µ|Θp][Θd ][Θp] (5)

Full conditional of regional yield, µt

[µt |yO , yA, yQ ,Θd ,Θp] ∼ N

(
∆2

∆1
,

1

∆1

)
(6)

∆1 =
∑

k=O,A

1

σ2
km∗ + s2kTm∗

+
I{Q}
s2QT

+
1

σ2
η

(7)

∆2 =
∑

k=O,A

yktm∗ − bkm∗
σ2
km∗ + s2kTm∗

+
I{Q}yQt

s2QT

+
z
′
tβ

σ2
η

(8)
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Bayesian hierarchical model–state level yield

State-level counterparts indexed by j ∈ {1, 2, ..., J}

Unconstrained State Model–Define µt· ≡ (µt1, µt2, . . . , µtJ),

µt·|y ,Θd ,Θp,∼ indep MVN

(
vec

(
∆2j

∆1j

)
, diag

(
1

∆1j

))
(9)

Constrained State Model–Enforce constraint by conditioning (9)
on µt =

∑
j wjµtj(

µt1, µt2, . . . , µt(J−1)
)
∼ MVN(µ̄, Σ̄) (10)

µtJ = µt −
1

wtJ

J−1∑
j=1

wtjµtj (11)
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Summary of model outputs
Speculative Region Model Constrained State Model Unconstrained State Model

Region yield and error Benchmarked state yields and
errors

Region forecast decomposition State forecast decompositions
and benchmarking adjustments

Wang et al. (2012) Adrian (2012), Nandram et al.
(2014),Cruze (2015)

Kass and Steffey (1989)

State 1 State 2 · · · State J SPEC
Overall Forecast µ̂Tj x x · · · x x
Error x x · · · x x

OYS yOTm∗j − b̂Om∗ x x · · · x x

AYS yATm∗j − b̂Am∗ x x · · · x x

Covariates z
′
T β̂ x x · · · x x

Sept. APS yQTj x x · · · x x
Benchmarking Adj. dj x x · · · x

µ̂tj ≈
∑

k∈{O,A,Q,Covariates}

ck(SOURCE )k + dj (12)

ck ∝ (variance)−1k
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Winter wheat speculative region

1.8%2.5%
2.7%

5.1%

8.7% 35.8%

16.9%

11.4%

8.5%6.6%

25

30

35

40

45

50

−120 −110 −100 −90 −80
long

la
t

I 10 state region–some states geographically isolated
I Kansas has major share of harvested acres (Plotted: wj , 2012)
I Four distinct types of winter wheat
I Differential planting and harvest
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Winter wheat speculative region–types of wheat
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I States ‘specialize’

I Soft varieties associated
with higher yield

I Washington, Missouri,
Illinois, Ohio have higher
yields

I Confounding with state
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Winter wheat speculative region–differential harvest
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I May OYS: only TX, OK, KS

I Southern states complete harvest
before northern states begin

I Timing of covariates

I Deriving covariates for the region
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Winter wheat model–covariates
Covariates reflect conditions approaching active harvest dates

µtj = βj1 + βj2zj2 + βj3zj3 + βj5zj4 + βj5zj5

I State-specific constant

I zj2: Linear time trend

I zj3: Monthly precipitation
(NOAA)

I zj4: Monthly avg. temperature
(NOAA)

I zj5: Crop condition–% good +
% excellent week # (NASS)

State/FIPS

May Covars June Covars July-September Covars

Condition (Week #) Weather (Month) Condition (Week #) Weather (Month) Condition (Week #) Weather (Month)

CO 8 15 April 21 May 21 May
IL 17 15 April 19 May 19 May
KS 20 15 April 19 May 19 May
MO 29 15 April 19 May 19 May
MT 30 15 April 19 May 24 June
NE 31 15 April 21 May 21 May
OH 39 15 April 21 May 21 May
OK 40 15 April 17 April 17 April
TX 48 15 April 17 April 17 April
WA 53 15 April 22 May 22 May
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Comparing ASB estimates and model outputs–2012

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10 Region
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Weights applied in wheat forecast decomposition
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I Early season emphasis on covariates

I Increasing emphasis on OYS in July

I Heavy emphasis on last AYS in August

I Heavy emphasis on quarterly survey in September
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Extensions and conclusions

1. NASS yield models (corn, soybeans, winter wheat)
capture expert assessment in manner which is
reproducible and provide justifiable measures of
uncertainty.

2. This methodology is flexible enough to accommodate
many types of auxiliary data.

I Additional commodities

I Non-spec region states

I New technologies, e.g., soil moisture monitors
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Thank you!
Questions?

nathan.cruze@nass.usda.gov
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