MODIS-based Modeling of Corn and Soybean Yields in the US

David M. Johnson, Geographer dave.johnson@nass.usdas.gov

United States Department of Agriculture National Agricultural Statistics Service www.nass.usda.gov

"... providing timely, accurate, and useful statistics in service to U.S. agriculture."

United States Yield (bushel/acre)

United States Yield Year to Year Change %

• Corn • Soybeans

NASS Crop Production reports

Yields results primarily derived from two surveys

Agricultural Yield

- Farmer reported survey data of expected crop yields.
- Data obtained throughout the growing season.
- Conducted in all states except Alaska and Hawaii.
- Sample size in the 1000s per state.
- Farm operator contacts are selected from the March Crops/Stocks survey (small grains) and the June Crops/Stocks survey (late season crops and tobacco).
- Primarily telephone based.

Objective yield

- Corn, Cotton, Soybeans, Wheat, Potatoes.
- Only done in states where the commodities are primarily found.
- Samples selected from areas found in June Area Survey ("Acreage").
- Performed at 100s of sample sites per state.
- Biophysical plant/seed measurements obtained.
- Each plot revisited a few times per season.

Estimating Yield from Remote Sensing

Third method for yield estimates

- There is a relationship between crop
 - Biomass, vigor, "greenness", NDVI
 - and
 - Daytime land surface temperature
 - And the resulting corn or soybean yield
- Utilize MODIS data to obtain biomass and temperature variables
- Do it for
 - National, State, "ASD", and County levels
 - And map at pixel level

Moderate Resolution Imaging Spectroradiometer (MODIS)

NATIONAL AERONAUTICS

AND SPACE ADMINISTRATION

SEARCH

≉ G0

+ NASA Homepage

Why MODIS?

- Global coverage
- Daily revisit rate
- 15 acre ground sample resolution
 - from red and near-infrared bands
- "Best of" image mosaics automatically generated
 - 8 and 16-day temporal windows
- Timely
 - data usually available within a couple of days
- Free distribution
 - downloaded via ftp
- Robust user group
 - nearly 20,000 citations so far
- Launched in 1999 and 2002
 - Two of them
 - 10-year plus history
- 6 year design life but still functioning fine
- Similar follow-on mission
 - VIIRS

USDA

modis.gsfc.nasa.gov

MODIS NDVI data example

Calculation and use of NDVI

 $NDVI = \frac{(NIR - VIS)}{(NIR + VIS)}$

NIR = near-infrared VIS = visible

Ranges from -1.0 to 1.0

NDVI is a related to

- Plant health
- Cholophyll content
- "Greenness"
- Biomass
- Vegetation vigor

10

MODIS LST data example

Corn phenology fundamentals

Corn 5-year average 2006-2010 1.0 0.9 State 0.8 ----- Arkansas ----Illinois -----Indiana 0.7 → Iowa **Terra MODIS mean NDVI** 🗕 Louisiana 0.6 ----- Minnesota Missouri — Mississippi 0.5 ----- North Dakota -----Nebraska 0.4 → Ohio -----South Dakota 0.3 0.2 9/1 10/1 8/1 0.1 7/12 7/28 3/22 4/7 6/10 6/26 8/13 9/30 10/16 11/1 11/17 12/3 4/23 5/9 5/25 8/29 9/14

16-day composite median date

Establishing the pixels that are only corn

FSA CLU/578 (early season)

NASS CDL (late season)

MODIS-scaled High probability sample of corn areas

Intersecting corn "mask" with MODIS data

County-level database developed

- Potential predictor variables (independent)
 - State (All major production Corn Belt states)
 - County (for each that had a published estimate, ~1000 of them)
 - Year (2006 2011)
 - 32 for each ranging every 8 days from February 18 October 30
 - NDVI (derived from Terra "MOD09Q1" 250m)
 - Day LST (1:30 PM from Aqua "MYD11A2" 1000m)
 - Thus 68 in total
- Forecast variable (dependent)
 - NASS published county level yield (available from NASS "Quickstats" webpage)
- Resulting database to evaluate ~5000 records

	A	в	с	D	E	F	G	н	1	J	к	L	м	N		L	BM	BN	BO	BP
1	20	119	2009	2263.17	2276.58	2303.59	2348.65	2434.37	2359.19	2266.35	2288.19	2367.71	2512.1	2629.59	28	98.5	15049.9	15100.7	14962.4	225
2	20	69	2009	2288.49	2311.38	2342.2	2339.95	2407.06	2383.9	2340.03	2488.27	2703.84	2684.03	2654.48	28	911.1	14966.6	15021.6	14898	219
3	20	119	2007	2276.42	2251.23	2264.43	2352.61	2469.31	2547.4	2619.07	2684.33	2815.85	2966.01	3141.06	33	29.4	15280.7	15183.5	15095.1	215
4	20	81	2009	2218.23	2247.03	2304.9	2340.96	2421.18	2349.36	2270.35	2346.69	2446.1	2476.15	2472.75	20	60.4	15013.3	15065.8	14938.8	212
5	31	137	2009	2167.21	2154.48	2139.61	2156.15	2212.33	2278.63	2384.85	2470.95	2573.56	2613.23	2606.06	27	66.6	14578	14519.3	14533.3	21
	20	175	2007	2232.36	2255.85	2303.21	2438.8	2705.49	2732.7	2735.31	2733.36	2854.66	3053.56	3107.51	32	455	15331.1	15236.9	15109.8	201
7	17	187	2008	1766.18	2556.21	2600.69	2643.94	2644.2	2590.61	2594.14	2706.57	2852.78	3125.75	3459.15	3.	40.3	14845.2	14543	14629.6	201
\$	19	93	2009	1981.28	2104.24	2312.87	2173.23	2118.37	2141.06	2191.56	2315.99	2460.3	2716.56	2887.91	30	16.4	14537.5	14458.7	14470.1	201
9	31	185	2009	2116.76	2196.12	2298.1	2295.07	2297.18	2361.89	2379.85	2411.81	2493.01	2683.23	2960.81	31	 1678	14508.9	14480.1	14463.9	201
0	17	203	2008	2163.13	2259.22	2355.42	2618.68	2614.77	2551.36	2627.17	2764.98	2829.49	2942.49	3344.19	33	 76.6	14873.8	14508.4	14620.5	20
1	17	109	2008	2527.91	2730.11	2685.04	2709.46	2770.32	2661.12	2665.43	2793.58	2972.49	3209.61	3650.63	35	68.4	14885.8	14568.7	14658.5	20
2	31	81	2009	2142.37	2188.07	2278.81	2282.22	2292.83	2342.79	2365.32	2406.9	2496	2665.16	2881.11	3	76.1	14501.9	14447.6	14462.2	205
3	17	203	2007	964.94	2274.4	2601.68	2709.84	2777.16	2584.11	2568.92	2783.05	3024.46	3052.39	3121.62	3.	14.6	15111.4	14740.3	14567.9	20
4	19	165	2009	2077.56	2064.12	2053.83	2155.59	2357.15	2276.43	2252.18	2341.4	2441.82	2643.78	3136.29	31	33.3	14608.8	14509.7	14527.9	204
5	20	81	2007	2350.12	2276.67	2247.89	2383.91	2661.31	2660.21	2643.89	2631.8	2883.8	3317.63	3184.67	31	56.2	15275	15216.8	15107.6	203
6	17	175	2008	1352.35	1906.66	2479.59	2545.58	2607.91	2503.92	2507.45	2621.58	2781.29	2988.94	3283.28	3	63.8	14841.5	14532.1	14606	203
7	31	99	2009	2141.86	2118.68	2121.94	2139.96	2196.7	2261.97	2360.63	2444.19	2524.94	2535.12	2579.6	26	55.4	14547.6	14507.1	14520.7	203
8	19	35	2009	2131.72	2203.73	2379.83	2237.11	2157.33	2182.48	2230.26	2375.26	2546.31	2704.29	2947.32	31	62.7	14564.6	14480.9	14480.3	20

Corn yield dependence at county level Corn Belt region, 2006-2011

Soybean yield dependence at county level Corn Belt region, 2006-2011

— NDVI —— LST-day

Rulequest Cubist

Example county-level prediction output

Case	Given	Predicted		
Mo	Value	Value		
140	varue	value		
1	1701 0	02 40	4 - 2	04 70
1	1/01.0	52.45	+- 2	4.70
2	1703.0	138.24	+- 2	24.78
2	1705 0	64 59	4 - 2	A 79
3	1/03.0	04.50	+- 2	4.70
4	1707.0	129.20	+- 2	24.78
5	1709 0	106 46	+- 2	4 78
, i	170510	100.10		
6	17011.0	132.43	+- 2	24.78
7	17013.0	104.15	+- 2	24.78
	17015 0	150 00		04 70
0	1/015.0	150.99	+- 2	4.70
9	17017.0	127.98	+- 2	24.78
10	17010 0	123 06	+- 2	4 78
10	17012.0	125.00		
* 11	17021.0	122.79	+- 2	24.78
12	17023.0	79.02	+- 2	4.78
10	1702010	45.00		1.70
1.5	1/025.0	45.30	+- 2	24.78
14	17027.0	59.63	+- 2	24.78
10	17020 0	04 61	4	04 70
15	1/029.0	54.01	T 2	4.70
16	17031.0	140.96	+- 2	24.78
17	17033 0	65 67	+- 2	4 78
17	17033.0	00.07	2	.4.70
18	17035.0	83.40	+- 2	24.78
19	17037.0	143.90	+- 2	24.78
20	17020 0	124 40	4	04 70
20	1/039.0	124.40	+- 2	4./0
21	17041.0	125.98	+- 2	24.78
22	17043 0	137 51	+- 2	4 78
22	17043.0	137.31		.4.70
23	17045.0	104.61	+- 2	24.78
24	17047.0	76.02	+-2	4.78
25	17040 0	CC 14	1 5	14 70
25	1/049.0	00.14	+- 2	4./0
26	17051.0	62.86	+- 2	24.78
27	17053 0	101 00	+- 2	4 78
27	1/055.0	101.90	T 2	4.70
28	17055.0	54.85	+- 2	24.78
29	17057.0	109.45	+- 2	4.78
20	17057.0	110 04		
30	1/059.0	113.84	+- 2	24./8
31	17061.0	104.00	+- 2	24.78
32	17063 0	100 02	+- 2	4 78
52	17005.0	100.02	+- 2	4.70
33	17065.0	64.23	+- 2	24.78
 34 	17067.0	110.53	+- 2	4.78
25	17060 0	60.21	1 3	04 70
33	1/069.0	69.21	+- 2	4./0
36	17071.0	127.78	+- 2	24.78
37	17073.0	121.29	+- 2	4.78
	17075.0	121.27		
38	17075.0	128.79	+- 2	24.78
39	17077.0	63.20	+- 2	24.78
40	17070 0	70 46	4 - 2	04 70
40	1/0/9.0	/0.40	+- 2	4.70
41	17081.0	46.99	+- 2	24.78
42	17083.0	94.22	+- 2	24.78
42	17005 0	122 06		04 70
43	1/005.0	125.96	+- Z	4./0
44	17087.0	73.05	+- 2	24.78
45	17089 0	131 46	+- 2	4 78
10	17007.0	101.40		
46	1/091.0	130.11	+- 2	(4./8
47	17093.0	120.26	+- 2	24.78
49	17095 0	129 05	4	04 79
40	1/095.0	120.95	+- 2	4./0
49	17097.0	120.66	+- 2	24.78
50	17099.0	128.53	+- 2	4.78
		120.00		

Case No	Given Value	Predicted Value
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 2 2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S01.0 503.0 505.0 507.0 501.0 501.0 501.0 501.0 501.0 501.0 501.0 501.0 501.0 501.0 502.0 502.0 502.0 503.0 503.0 503.0 5041.0 5045.0 5045.0 5045.0 5045.0 5045.0 5045.0 5045.0 5045.0 5055.0 5055.0 5063.0 5057.0 5063.0 5057.0 5077.0 5075.0 5077.0 5075.0 5077.0 5075.0 5075.0 5075.0 5075.0 5075.0 5081.0 5083.0 5085.0	$\begin{array}{c} 45.30 + - 7.60 \\ 32.20 + - 7.60 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 36.80 + - 7.60 \\ 10.88 + - 7.60 \\ 39.92 + - 7.60 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 4.31 + - 9.50 \\ 34.14 + - 7.60 \\ 38.62 + - 7.60 \\ 39.48 + - 7.60 \\ 39.48 + - 7.60 \\ 39.78 + - 7.60 \\ 39.78 + - 7.60 \\ 39.78 + - 7.60 \\ 39.78 + - 7.60 \\ 39.78 + - 7.60 \\ 31.14 + - 9.50 \\ 4.31 + - 9.50 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.53 + - 7.60 \\ 33.67 + - 7.60 \\ 4.31 + - 9.50 \\ 31.07 + - 7.60 \\ 4.31 + - 9.50 \\ 34.07 + - 7.60 \\ 4.31 + - 9.50 \\ 34.07 + - 7.60 \\ 4.31 + - 9.50 \\ 34.29 + - 7.60 \\ 4.31 + - 9.50 \\ 34.29 + - 7.60 \\ 4.31 + - 9.50 \\ 34.29 + - 7.60 \\ 4.31 + - 9.50 \\ 34.29 + - 7.60 \\ 4.31 + - 9.50 \\ 34.80 + - 7.60 \\ 4.31 + - 9.50 \\ 22.51 + - 7.60 \\ 4.31 + - 9.50 \\ 22.51 + - 7.60 \\ 4.31 + - 9.50 \\ 34.80 + - 7.60 \\ 34.80 + - 7.60 \\ 34.80 + - 7.60 \\ 34.80 + - 7.60 \\ 34.31 + - 9.50 \\ 22.51 + - 7.60 \\ 33.1 + - 9.50 \\ 22.51 + - 7.60 \\ 33.1 + - 9.50 \\ 23.1 + - 9.50$
50	5055.0	1.01 / 2.00

Corn

Soybeans

Weight by a 3-year average of harvested acres to derive ASD, state, and region estimates

"Voodoo Modeling"

Utilizing Rulequest Cubist software

- Learning tool to predict continuous (vs discrete) outcomes
- Allow for "composite" predictions using both
 - Instance-based
 - "Nearest neighbor"
 - Predicts the target value of a new case by finding the n most similar cases in the training data, and averaging their target values.
 - Model-based, via decision trees and piecewise linear regression
 - Divide and conquer strategy
 - Recursive splitting of training data to minimize intrasubset variation
 - Thus, for composite of instances and models:
 - Cubist finds the n training cases that are "nearest" (most similar) to the case in question. Then, rather than averaging their target values directly, Cubist first adjusts these values using the rule-based model.
- Also, does "Committee" models
 - made up of several rule-based models. Each member of the committee predicts the target value for a case and the members' predictions are averaged to give a final prediction

N	odel Construction Options
	Form of Model
	 Rules alone Instances and rules Let Cubist decide
	🔲 Use nearest 👘 instances
	Committee of 5 members
	Cross-validate folds
	🔲 Use sample of 👘 % cases
	🔽 Lock sample
	Maximum rules 100
	Extrapolation allowed 10 %
	🔲 Unbiased rules
	OK Defaults Cancel

Corn yield regression-tree model performance v. data timing county level, speculative region, 2006-2011

Correl coeff ——Relative |err

The **relative error magnitude** is the ratio of the average error magnitude to the error magnitude that would result from always predicting the mean value; for useful models, this should be less than 1!

The correlation coefficient measures the agreement between the cases' actual values of the target attribute and those values predicted by the model.

Soybean yield regression-tree model performance v. data timing county level, speculative region, 2006-2011

USDA/National Agricultural Statistics Service

Research and Development Division

Reality check

Scene of a large hailstorm

2012 Results: Remote sensing vs NASS yield

State level average error

corn = 5.8 bu./ac. soybeans = 3.1 bu./ac.

ASPRS Annual Conference Baltimore, Maryland USA 27 March 2013

Models improvements for 2013

•	Corn	2012	2013
	 relative err 	0.33	0.30
	 correl coeff 	0.93	0.95
•	Soybeans		
	 relative err 	0.31	0.30
	 correl coeff 	0.93	0.94

- Absolute error unchanged •
 - ~8.0 bu/ac for corn, ~2.5 for soybeans —

The end

